На что тратятся силы при движении велосипеда. Физика велосипеда

11.12.2009

Для того, чтобы двухколесный велосипед не упал, нужно постоянно поддерживать равновесие. Поскольку площадь опоры велосипеда очень мала (в случае двухколесного велосипеда это всего лишь прямая, проведённая через две точки, в которых колеса касаются земли), такой велосипед может находиться только в динамическом равновесии. Это достигается с помощью подруливания: если велосипед наклоняется, велосипедист отклоняет руль в ту же сторону. В результате велосипед начинает поворачивать, и центробежная сила возвращает велосипед в вертикальное положение. Этот процесс происходит непрерывно, поэтому двухколесный велосипед не может ехать строго прямо; если руль закрепить, велосипед обязательно упадёт. Чем выше скорость, тем больше центробежная сила и тем меньше нужно отклонять руль, чтобы поддерживать равновесие.

При повороте нужно наклонить велосипед в сторону поворота так, чтобы сумма силы тяжести и центробежной силы проходила через линию опоры. В противном случае центробежная сила опрокинет велосипед в противоположную сторону. Как и при движении по прямой, идеально сохранять такой наклон невозможно, и подруливание осуществляется точно так же, только положение динамического равновесия смещается с учётом возникшей центробежной силы.

Конструкция рулевого управления велосипеда облегчает поддержание равновесия. Ось вращения руля расположена не вертикально, а наклонена назад. Кроме того, она проходит ниже оси вращения переднего колеса и впереди той точки, где колесо касается земли. Благодаря такой конструкции достигаются две цели

  • При случайном отклонении переднего колеса движущегося велосипеда от нейтрального положения возникает момент силы трения относительно рулевой оси, который возвращает колесо обратно в нейтральное положение.
  • Если наклонить велосипед, возникает момент силы, поворачивающий переднее колесо в сторону наклона. Этот момент вызван силой реакции опоры. Она приложена к точке, в которой колесо касается земли и направлена вверх. Из-за того, что рулевая ось не проходит через эту точку, при наклоне велосипеда сила реакции опоры смещается относительно рулевой оси.

Таким образом, осуществляется автоматическое подруливание, помогающее поддерживать равновесие. Если велосипед случайно наклоняется, то переднее колесо поворачивается в ту же сторону, велосипед начинает поворачивать, центробежная сила возвращает его в вертикальное положение, а сила трения возвращает переднее колесо обратно в нейтральное положение. Благодаря этому, можно без особых проблем ехать на велосипеде «без рук». Велосипед сам поддерживает равновесие. Сместив центр тяжести в сторону, можно поддерживать постоянный наклон велосипеда и выполнить поворот.

Можно заметить, что способность велосипеда самостоятельно сохранять динамическое равновесие зависит от конструкции рулевой вилки. Определяющим является плечо реакции опоры колеса, то есть длина перпендикуляра, опущенного из точки касания колеса земли на ось вращения вилки; или, что эквивалентно, но проще измерить — расстояние от точки касания колеса до точки пересечения оси вращения вилки с землёй. Таким образом, для одного и того же колеса возникающий момент будет тем выше, чем больше наклон оси вращения вилки. Однако для достижения оптимальных динамических характеристик нужен не максимальный момент, а строго определенный: если слишком малый момент приведёт к трудности удержания равновесия, то слишком большой — к колебательной неустойчивости, в частности — «шимми» (см. ниже). Поэтому положение оси колеса относительно оси вилки тщательно выбирается при проектировании; многие велосипедные вилки имеют изгиб или просто смещение оси колеса вперёд для снижения избыточного компенсирующего момента.

На высоких скоростях (начиная примерно с 30 км/ч) переднее колесо может испытывать т. н. скоростные виляния (speed wobbles), или «шимми» — явление, хорошо известное в авиации. При этом явлении колесо самопроизвольно виляет вправо и влево. Скоростные виляния наиболее опасны при езде «без рук» (то есть когда велосипедист едет, не держась за руль). Причина скоростных виляний — не в плохой сборке или слабом креплении переднего колеса, они вызваны резонансом. Скоростные виляния легко погасить, снизив скорость или изменив позу, но если этого не сделать, они могут быть смертельно опасными

На высоких скоростях для управления велосипедом можно применять прием контрруление, знакомый мотоциклистам. Плавно отталкиваем правую ручку руля от себя, и удерживаем в таком положении — поворачиваем направо. Толкаем левую от себя — поворачиваем налево.

Езда на велосипеде эффективнее (по затратам энергии на километр) как ходьбы, так и езды на автомобиле. При езде на велосипеде со скоростью 30 км/ч сжигается 15 ккал/км (килокалорий на километр), или 450 ккал/ч (килокалорий в час). При ходьбе со скоростью 5 км/ч сжигается 60 ккал/км или 300 ккал/ч, то есть езда на велосипеде в четыре раза эффективнее ходьбы по затратам энергии на единицу расстояния. Поскольку при езде на велосипеде расходуется больше калорий в час, она также является лучшей спортивной нагрузкой. При беге затраты калорий в час ещё выше. Необходимо учитывать, что ударные нагрузки при беге, а также неправильная езда на велосипеде (например, езда в гору на высоких передачах, переохлаждение коленей, отсутствие достаточного количества жидкости и т. д.) могут травмировать колени и голеностопный сустав. Тренированный мужчина, не являющийся профессиональным спортсменом, может в течение длительного времени развивать мощность 250 ватт, или 1/3 л. с. Это соответствует скорости 30—50 км/ч по ровной дороге. Женщина может развивать меньшую абсолютную мощность, но большую мощность на единицу веса. Поскольку на ровной дороге почти вся мощность расходуется на преодоление сопротивления воздуха, а при езде в гору основные затраты — на преодоление силы тяжести, женщины, при прочих равных условиях, едут медленнее по ровному месту и быстрее в гору.

Расход калорий необходимо рассчитывать на килограмм массы тела. 4 км/ч — 0,04; 10 км/ч — 0,07; 15 км/ч — 0,11; 20 км/ч — 0,14; 30 км/ч — 0,18; далее выбранный коэффициент умножить на массу тела, и мы получим расход калорий в минуту. Например я ехал 2,5 часа со средней скоростью 30 км/ч, мой вес 95 кг итого 0,18*95*150=2565 ккал. Некоторые к собственной массе добавляют массу велосипеда, что достаточно спорно. В любом случае можно получить лишь приблизительные данные.

Двухколесный велосипед при движении не падает, потому что тот, кто на нём едет постоянно поддерживает равновесие. Площадь опоры велосипеда небольшая – это прямая, которая проведена через точки касания колёс велосипеда с землёй. Поэтому велосипед находится в состоянии динамического равновесия.

Достигается это при помощи подруливания: при наклоне велосипеда, человек поворачивает руль в ту же сторону. После этого велосипед поворачивает, при этом центробежная сила возвращает велосипед в начальное вертикальное положение. Процесс подруливания, чтобы удержать равновесие происходит непрерывно, поэтому движение велосипеда не прямолинейное. Если руль зафиксировать, то велосипед упадёт.

Существует зависимость скорости и центробежной силы. Чем выше скорость, тем большее значение у центробежной силы и соответственно меньше необходимо отклонять руль для поддержания равновесия.

Чтобы повернуть, необходимо наклонить велосипед в сторону так, чтобы сумма центробежной силы и силы тяжести проходила через линию опоры колёс. Если это не так, то центробежная сила опрокинет велосипед в другую сторону. Для облегчения поддержания равновесия конструкция рулевого управления велосипеда имеет свои особенности. Ось рулевой колонки наклонена назад, а не расположена вертикально. Она проходит ниже оси вращения колеса и впереди точки, где колесо велосипеда касается земли. Благодаря такому виду конструкции достигаются цели:

Во время торможения при езде на велосипеде, главное сохранять равновесие. Торможение не менее важный момент, чем сама езда, а скорей всего самый важный, потому что от этого зависит здоровье велосипедиста. Если знать теорию поведения велосипеда в момент торможения можно намного уменьшить количество синяков и шишек (к сожалению без этого всё равно не обойтись).

С определением всё понятно. В энциклопедиях написано, что “тормозить – это замедлять движение с помощью тормоза”. Но ведь вся штука заключается в том, что обычно всех не очень интересует чем замедлять (хотя и об этом надо бы упомянуть), Обычно всех интересует, как замедлять движение (давишь на рычаг и всё), а не чем его замедлять в определённой конкретной ситуации на дороге.

Можно попытаться расписать много теоретических советов на все возможные ситуации на дороге, но всегда есть исключения из правил и рано или поздно велосипедист оказывается в той ситуации, когда рекомендаций не хватает. Самое главное, чтобы торможение при езде на велосипеде было доведено до автоматизма, ведь в экстренных случаях размышлять как сделать правильно и вспоминать теорию просто нет времени.

Принять правильное решение помогает интуиция, но также надо знать некоторые теоретические правила поведения велосипеда в момент торможения.

Накат велосипеда зависит от различных факторов: характеристик рамы, амортизаторов, диаметра колеса, покрышек, давления в камерах, общего веса велосипеда и многих других. Накат нельзя измерить цифрами. Опытные велосипедисты могут его прочувствовать и оценить. Для любителей разница особенно видна, если они меняют например недорогой велосипед на более дорогой и высококачественный.

Рама. Есть выражение “накатистая рама”. Но, ощутить разницу между “ненакатистой” и “накатистой” рамой очень сложно, потому что явно заметные особенности характерны только очень дорогим моделям. Рамы, изготовленные из дорогих материалов, имеют свойство поглощать толчки и вибрации. Более удлиненные конструкции рам помогают велосипедисту занять на велосипеде более аэродинамичную посадку, что позитивно влияет на накат. Но, на обычном велосипеде накат от рамы зависит не так значительно, как от других компонентов.

Размер колёс. Один из главных определяющих факторов, влияющих на накат велосипеда. Колёса больших размеров на 28 или 29 дюймов проходят расстояние быстрее, чем 26 дюймовые, поэтому велосипед с ними более накатистый. Популярные сейчас найнеры, с 29 дюймовыми колёсами обладают этим качеством.

Протектор покрышки. Лучше всего катится гладкая узкая резина без протектора. Хуже всего широкая агрессивная покрышка с высоким рисунком протектора.

Так как классический велосипед имеет два колеса, то велосипедисту для того, чтобы он ехал, постоянно необходимо поддерживать равновесие и преодолевать различные силы, которые возникают в процессе движения. То, что конструкция велосипеда несложная, это не значит, что всё так просто. Физические силы, действующие при езде на велосипеде основаны на фундаментальных законах науки. Рассмотрим основные силы, которые действуют при езде на велосипеде.

1. Сила тяжести (гравитация). Гравитация – одно из четырёх фундаментальных явлений в природе. Объясняется законом Ньютона. Сила, с которой она действует, прямо пропорциональна массе тела велосипедиста. Чем больше вес велосипедиста, тем сильней сила гравитации. Она действует на велосипедиста и компоненты велосипеда перпендикулярно к поверхности земли. Сила её действия возрастает при подъёме на велосипеде в гору и соответственно уменьшается при спуске.

2. Сила сопротивления воздуха. Аэродинамические силы, действующие на велосипедиста в основном складываются из сопротивления воздуха и встречного или бокового ветра. При средней скорости и движении по ровной поверхности аэродинамическое сопротивление является наибольшей силой, которая препятствует движению вперёд. При дальнейшем увеличении скорости, аэродинамическое сопротивление становится подавляющим, и своей величиной намного превосходит все остальные силы, которые препятствуют движению вперёд.

Когда усовершенствование технических характеристик велосипеда достигло определённого предела и разницы в показателях отдельных компонентов различных производителей практически не стало, обратили внимание на сопротивление воздуха, которое велосипедист преодолевает при езде. Этот показатель имел внушительное цифровое значение, поэтому здесь было над чем поработать.

Как в самолётостроении и автомобильной промышленности для тестов, как встречный поток воздуха действует на велосипедиста используют аэродинамическую трубу. Это дорогостоящее устройство помогает определить взаимодействие объекта (велосипедиста) с потоком вохдуха, а также определить действующую силу в численном значении. Во время тестов определяется оптимальная посадка велосипедиста, а также коэффициент сопротивления встречному потоку воздуха отдельных частей велосипеда и экипировки спортсмена.

Конструкция аэродинамической трубы представляет собой комнату, с одной стороны которой установлены вентиляторы большой производительности, они и создают поток воздуха, имитирующий встречный ветер, скорость которого регулируется изменением мощьности электродвигателей, вращающих лопасти вентилятора

В процессе эксплуатации велосипеда на раму действуют нагрузки, которые многократно повторяются. Эти циклические нагрузки возникают от неровностей дорожного полотна: ямы, кочки, выбоины в асфальте и др. Когда в различных конструкциях начали использовать алюминиевые сплавы (особенно в авиации и космонавтике), то проведённые исследования показали, что однократная нагрузка не вызывает деформаций и разрушения материала, но определённое количество циклов нагрузок в материале конструкций вызывало деформацию, трещины и последующее за этим разрушение. Это явление характеризуется термином “усталостное разрушение“. Количество циклов нагружения, которое приводит к разрушению назвали “усталостной долговечностью“.

Те же исследования показывали, что наличие трещин, вмятин, отверстий, сварных швов в наиболее нагруженных местах конструкции снижает долговечность самой конструкции на порядок. Такая тенденция называется “локальная концентрация напряжения“. Даже небольшое отверстие в конструкции способствует увеличению напряжения рядом с собой как минимум в 2 раза, а царапина достаточной глубины в 5-6 раз. Трещина повышает локальное напряжение до предела текучести и поэтому планомерно увеличивается с возрастающей скоростью.

Велосипед становится всё более популярным транспортным средством в наши дни, когда автомобилей стало настолько много, что они мешают существованию друг друга. Велосипеды имеют многочисленные преимущества по сравнению с автомобилями, посему во многих европейских странах считаются едва ли не основным средством передвижения. Растёт популярность двухколёсных друзей и в нашей стране.

Велосипед - это не только средство передвижения, но и сложная механическая система, которая работает по фундаментальным законам физики. Все велосипеды , вне зависимости от типа, марки, модели и стоимости, заставляют своих наездников преодолевать различные силы. Во время езды велосипедист сталкивается с двумя основными силами - это гравитация и аэродинамика. Сила земного притяжения прижимает велосипедиста с его транспортным средством к земле. При этом вектор действия силы направлен строго перпендикулярно поверхности земли. Сила гравитации тем больше, чем тяжелее весит велосипед вместе со своим наездником. Она оказывает большое влияние на те усилия, которые приходится прикладывать велосипедисту при езде на своём двухколёсном транспортном средстве. Если масса тела и вес велосипеда меньше, то и ездить будет гораздо проще, а, значит, езда подарит больше приятных ощущений. Хотя, для кого-то велосипед - это тренажёр для сжигания калорий.

Второй фундаментальной физической силой, которую приходится преодолевать велосипедисту во время движения, является аэродинамика. В сущности, это сила сопротивления встречного воздушного потока, которая нарастает по мере увеличения скорости движения. Чем быстрее движется велосипедист, тем больше сила сопротивления воздуха. Помимо встречных воздушных потоков на велосипед могут действовать и боковые ветра, что ещё больше усложняет движение и заставляет прикладывать дополнительные силы. Преодолевать аэродинамические силы при езде на большой скорости по ровной дороге не просто - для этого нужна отличная физическая подготовка. Если таковой нет, то лучше приобрести велосипед с электроприводом, который позволит ездить на двух режимах - механическом и автоматическом. Надо отметить, что при механической езде тратится гораздо больше энергии и сил, чем на автоматическом режиме. С целью экономии заряда аккумулятора ездить на электроприводе лучше не постоянно, а только на тех участках, которые особенно трудно преодолевать своими силами (подъёмы вверх, пересечённая местность и так далее).

Так как классический велосипед имеет два колеса, то велосипедисту для того, чтобы он ехал, постоянно необходимо поддерживать равновесие и преодолевать различные силы, которые возникают в процессе движения.

То, что конструкция велосипеда несложная, это не значит, что всё так просто. Физические силы, действующие при езде на велосипеде основаны на фундаментальных законах науки. Рассмотрим основные силы, которые действуют при езде на велосипеде.

Внешние силы

1. Сила тяжести (гравитация). Гравитация — одно из четырёх фундаментальных явлений в природе. Объясняется законом Ньютона. Сила, с которой она действует, прямо пропорциональна массе тела велосипедиста. Чем больше вес велосипедиста, тем сильней сила гравитации. Она действует на велосипедиста и компоненты велосипеда перпендикулярно к поверхности земли. Сила её действия возрастает при подъёме на велосипеде в гору и соответственно уменьшается при спуске.

2. Сила сопротивления воздуха. Аэродинамические силы, действующие на велосипедиста в основном складываются из сопротивления воздуха и встречного или бокового ветра. При средней скорости и движении по ровной поверхности аэродинамическое сопротивление является наибольшей силой, которая препятствует движению вперёд. При дальнейшем увеличении скорости, становится подавляющим, и своей величиной намного превосходит все остальные силы, которые препятствуют движению вперёд.

3. Сила сопротивления качению. Сопротивление качению — сила, которая возникает при движении круглого предмета, в данном случае колеса велосипеда по плоской поверхности со скоростью прямолинейного движения. Возникает в основном при деформации колеса, деформации поверхности, по которой двигается колесо или деформации обоих. При езде на велосипеде эта сила возрастает при плохо накачанных колёсах или передвижении например по песку. Также сила сопротивлению качения дополнительно зависит от таких факторов как радиус колеса, скорости движения и типа соприкасающихся поверхностей.

4. Силы, возникающие во время манёвров для балансировки велосипеда. Возникают при изменении направления движения велосипеда или при манипуляциях рулём, чтобы сбалансировать велосипед и удержать равновесие. Определяется центробежной силой. В механике термин центробежная сила используется для объяснения двух понятий — сила инерции и центростремительная сила. Это сложные процессы и разбирать их довольно долго. Все они описаны в учебниках.

Внутренние силы

1. Крутящий момент — это способность с помощью приложенной силы повернуть предмет вокруг своей оси, то есть колесо велосипеда. Сила создаётся ногами велосипедиста, а крутящий момент передаётся от педалей на колесо велосипеда при помощи цепной, карданной, ременной или другой передачи. Регулируется путём подбора передних и задних звёзд в различных вариантах.

2. Другие внутренние силы в основном вызваны трением между подвижными частями велосипеда и вариантами его устройства. Их величина зависит от вида подвески, трансмиссии, механизма рулевого управления и других элементов конструкции.

Также читать на эту тему:

На велосипеде для того, чтобы передать крутящий момент с цепи на втулку заднего колеса применяют три основные разновидности передачи: Кассетная передача. Фривильная передача. Передача фрикостер.

Строгих правил нет, каждый выбирает свой вариант, иногда сильно отличающийся от общепринятого. С приобретением опыта езды у каждого велосипедиста вырабатываются свои приоритеты в выборе передач под себя. Для того, чтобы сохранить элементы трансмиссии и продлить срок…

Передний переключатель. Его работа состоит в том, чтобы перебрасывать цепь с одной звезды на другую. Параллелограммный механизм перемещает рамку, через которую проходит цепь. При переключении на другую скорость рамка перемещается и располагается над необходимой звездой…

Существует прямая связь между давлением в камерах и тем, насколько легко едет велосипед. Недостаточно накачанные колёса тормозят велосипед, и наоборот камеры, заполненные воздухом, не превышающим максимальное давление придают легкость движению…

Изобретение более ста лет назад цепного привода стало одним из революционных шагов в развитии велосипеда. С помощью цепи, появилась возможность передавать усилие от педалей на заднее колесо велосипеда, что позволило уменьшить размер колёс до современных размеров…